

Longer Range | Higher Data Rates | Lowest SWaP

The THPR1070, a Triad High Power Radio (THPR), contains a Silvus Streamcaster SC4400 radio at its core and combines with our high-power RF subsystems in a low SWaP package. This 4 channel, C-Band amplified radio integrates the necessary Silvus radio, RF amplification, control circuitry, and interfaces to achieve higher RF output power, greater throughput, and longer link distances than the stand-alone radio. Offering +22 to +32 VDC Input Voltage, this THPR contains BDAs, RF filtering, and innovative SoC-based monitoring and controls, with link diagnostics.

TABLE OF CONTENTS

- → THPR1070 Features
- \rightarrow Link Distance Capabilities
- → RF Performance Specifications
- \rightarrow Electrical Specifications
- → Environmental Specifications
- → Mechanical Specifications
- \rightarrow Mechanical Drawing
- → DC/Control Connectors

THPR SERIES FEATURES

- Fully Integrated High-Power RF Sub-System & Radio
- Extended Range/Data Rate over Stand-Alone Radio
- Enhanced RF Link Control via USB
- Wide Input Voltage, Single DC Supply

THPR SERIES APPLICATIONS

- Long Distance High Data Rate ISR Links
- UAS, UGV, and USV Video/Data Links
- Military MANET
- Maritime High-Throughput LOS/NLOS Systems
- Point-To-Point and Mesh Networking

FEATURES

Internal Microcontroller

The THPR has an internal microcontroller that can be used for UART communication via USB.

A complete list of features and commands can be provided upon request.

Thermal Protection

Each RF module in the THPR1070 is capable to independently shut off automatically when the amplifier baseplate has reached approximately +90 °C.

When a thermal trip has occurred, the module remains off until the temperature has dropped to approximately 10 degrees below the trip point.

External Accessories

Two +5V outputs are available for external accessories.

Output 1 can provide 1A max (from THPR internal supply)

Output 2 can provide 400mA max (from radio internal supply)

Outputs cannot be combined/connected.

Grounding

The THPR1070 has a optional #10 set screw to be used as a GND stud.

The bottom surface is not anodized to allow use in grounding.

LEDs

LEDs are enabled by default and can be disabled via USB command.

RF Modules: The RF module LEDs turns Blue when in RX, Green when in TX, and Red during an error condition.

Radio: The Radio LED functions as per SC4400 user manual. It also turns Blue when the THPR is in STANDBY mode.

Additionally, the LED is off when RF Blank is enabled.

Pressure Equalization Vent

The THPR has two vents for equalizing internal and external pressure due to temperature changes, altitude changes, etc.

Fans

The heatsink/fan assembly is designed to keep the THPR below its max operating temperature while being used at its max ambient temperature.

Fans can be enabled manually via USB command or automatically via temperature. As a default, fans are automatically turned on after reaching +50 °C and turned back off after dropping to +40 °C by default.

When OFF, fans remain spinning at a decreased RPM.

RF Blanking

A pin is available to manually disable the RF output:

When the pin is high/floating, RF output will be enabled.

When the pin is low or GND, RF output is disabled. Radio may lose link when RF output is disabled

The pin is internally pulled high via a 47 kOhm resistor.

RF output enabled/disabled switching speed is less than 1mS (Does not include time to re-establish a link).

Standby Mode

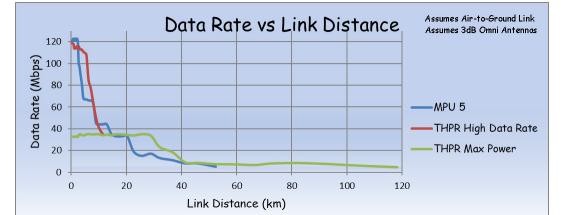
The THPR1070 features a standby mode, which can be triggered via the POWER ENABLE pin (16).

During this mode, the THPR is powered on, but all RF modules and Radio are powered down.

Radio will require a reboot after enabling operating mode.

The pin is internally pulled to +3.3V through a 47kOhm resistor.

The THPR defaults to operating mode when ON.


Standby Mode is able to be activated by two different methods, which are selectable via USB command and cannot be run simultaneously:

Method 1: When the Power Enable pin is high/floating, Operating Mode is activated. When Power Enable is pulled low, Standing Mode is activated.

Method 2: Standby Mode and Operating Mode switch each time the Power Enable pin is pulled low.

LINK DISTANCE CAPABILITIES

The chart below provides estimates for our THPR series' achievable link distances, based on typical bandwidth needs and antenna configurations. <u>Contact Triad</u> for our expert ISR link team to assess your link requirements.

CHARACTERISTICS/SPECIFICATIONS

RF Performance Specifications

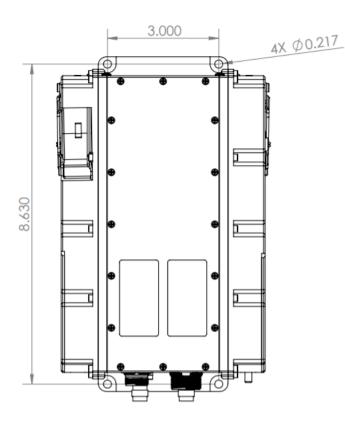
Parameter	Min.	Тур.	Max	Unit	Notes
Operating Frequency	4700	—	5000	MHz	Operating frequency of SC4400
Power output per Channel (Low Data Rate)	_	20	_	W	Typical RF output power per stream (4 total) achievable by the system when the SC4400 is operating at a low data rate MCS.
Power output per Channel (High Data Rate)	_	5	_	W	Typical RF output power per stream (4 total) achievable by the system when the SC4400 is operating at a high data rate MCS.

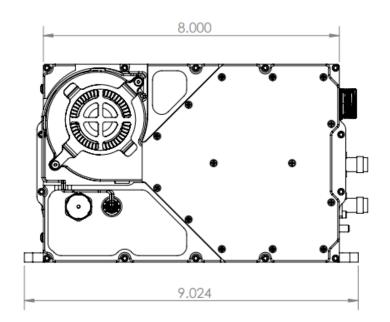
Electrical Specifications

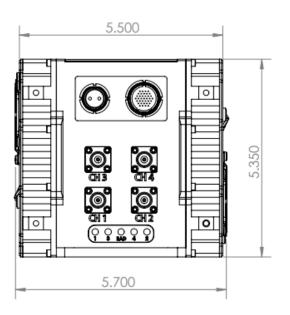
Parameter	Min.	Тур.	Max	Unit	Notes
Supply Voltage Range	+22	+28	+32	VDC	Designed for MIL-STD-704F
Average Operating Current Draw (Idle)	_	0.7	1	A	+28V supply voltage.
Average Operating Current Draw (Low Data Rate)	_	9	12	A	+28V supply voltage, RF power is set to minimum of 20W per Stream operating at a low data rate MCS.
Average Operating Current Draw (High Data Rate)	_	7.5	10.5	A	+28V supply voltage, RF power is set to minimum of 5W per Stream oper- ating at a high data rate MCS.

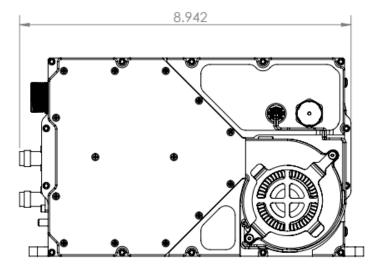
Environmental Specifications

Parameter	Min.	Тур.	Max	Unit	Notes
Operating Temperature	-40	_	+70	°C	Ambient Temperature (Dependant on User Variables)
Cooling	Conductio	on/convection, I	Forced Air	—	_
Altitude	0 —		25,000	ft.	_
Shock / Vibration	Desi	gned to MIL-STI Tested DO-160			
Ingress Protection Rating		IP67		_	With exception of LRU replaceable fan


Mechanical Specifications


Parameter	Value	Unit	Notes
Dimensions	9.02 x 5.70 x 5.35 (229.11 x 147.32 x 135.89)	in (mm)	L×W×H
RF Connectors	TNC-F	Connector Type	Mating Connector Type: TNC-M
DC Connector	801-011-07M10-2PA	Part Number	Mating Connector PN: 801-007-16M10-2SA
Signal Connector	801-011-07M13-37PA	Part Number	Mating Connector PN: 801-007-16M13-37SA
Mounting	M5 Through Holes	_	See Mechanical Drawing Below
Weight	150 (4252)	oz (g)	_
Finish	Anodized Matte Black	—	MIL-A-8625


 $\widehat{\Box}$



MECHANICAL DRAWING

DC/CONTROL CONNECTORS

J1 Connector - DC Connector

(Glenair PN: 801-011-07M10-2PA)

Pin	Description	Туре	I/O	Notes
1	+Vin	Power	Input	Power Supply In
2	-Vin	Power	Input	Isolated from GND

J2 Connector - Signal Connector (Glenair PN: 801-011-07M13-37PA)

Pin	Description	Туре	I/O	Notes
1*	MPS5	Data	Input	Multi- Position Switch Pin 5
2*	MPS3	Data	Input	Multi- Position Switch Pin 3
3*	MPS4	Data	Input	Multi- Position Switch Pin 4
4*	MPS2	Data	Input	Multi- Position Switch Pin 2
5*	MPS6	Data	Input	Multi- Position Switch Pin 6
6*	MPS1	Data	Input	Multi- Position Switch Pin 1
7*	AUDIO GND	Signal	—	GND reference for AUDIO OUT Isolated from chasis GND
8*	AUDIO OUT	Signal	Output	Audio Output
9*	USB0 GND	Data	—	GND for Radio USB0 Connected to chasis GND
10	RS232 GND	Data		GND for Radio RS232 Connected to chasis GND
11	+5V1 GND	Power	_	GND for +5V1 Output Connected to chasis GND
12	+5V2 GND	Power	—	GND for +5V2 Output Connected to chasis GND
13	GND	Signal	—	General Purpose Ground
14*	USB0 D-	Data	—	Data- for USB0
15*	USB0 D+	Data	—	Data+ for USB0
16	Power Enable	Signal	_	3.3V TTL High/ Floating = Shutdown Low/ GND = Enable
17*	MIC IN+	Signal	Input	Microphone Input
18	RF BLANK	Signal	Input	High/Floating = RF Output Enabled Low/GND = RF Output Disabled
19*	PTT	Signal	Input	Push-To-Talk
20*	USB0 VBUS	Data	_	Voltage Bus for Radio USB0
21*	USB1 D -	Data	_	Data- for Radio USB1
22*	USB1 GND	Data	_	GND for Radio USB1

Continues on next page

 $\widehat{\Box}$

J2 Connector - Signal Connector (Continued) (Glenair PN: 801-011-07M13-37PA)

Pin	Description	Туре	I/O	Notes	
23	USBT GND	Data	_	GND for Internal Microcontroller USB	
24*	RS232 TX	Data	Output	RS232 From Radio	
25*	RS232 RX	Data	Input	RS232 Into Radio	
26*	USB1 SNS	Data	—	USB OTG Sense for Radio USB1	
27*	USB1 VBUS	Data	—	Voltage Bus for Radio USB1	
28*	USB1 D+	Data	—	Data+ for Radio USB1	
29*	USBT D+	Data	_	Data+ for Internal Microcontroller USB	
30	USBT VBUS	Data	—	Voltage Bus for Internal Microcontroller USB	
31*	Ethernet TX+	Data	Output	10/100 Base T Transmit Data Positive	
32*	Ethernet TX-	Data	Output	10/100 Base T Transmit Data Negative	
33*	Ethernet RX-	Data	Input	10/100 Base T Receive Data Negative	
34	USBT D-	Data	_	Data- for Internal Microcontroller USB	
35	+5V1	Power	Output	1A Max- for +5V accessories	
36*	+5V2	Power	Output	400mA Max- for +5V accessories	
37*	Ethernet RX+	Data	Input	10/100 Base T Receive Data Positive	

* Denotes pin is directly connected to the radio.

CABLE OPTIONS

For available cable options, please contact us at inquiries and pricing.